Soil and Plant Health: Maximizing Crop Production

Website Editor • February 8, 2016

Very few Ag publications today fail to publish at least one article discussing Soil Health. Advanced practices in tillage along with the use of cover crops and combining that with the use of growth regulators and rhizobacteria, such as that which is in our Rhyzo-Link products, are practices that will lead us in part to greater levels in crop production. The common link between our soils, the plant and the symbiotic relationship between them all is Carbon and I’d like to take the next few paragraphs to add some clarity on the subject. First, I want to turn over a few basic pieces and define carbon as it pertains to crop production. Carbon in the soil can be found in various stages of decomposition and varying degrees of usefulness. Soil carbons reside in three levels or organic pools. The first pool is called “Readily Available” and is believed to cycle in one to two years and are primarily derived from the breakdown of plant and animal residues. These are simple carbons that will become available to crop production shortly after the breakdown of crop residue, manures or plowdown like cover crops. Many of the papers and the research that I have read suggests that on an average soil this pool of Readily Available carbons make up approximately 15% of the organic composition of the soil. The second pool is called “Slowly Available” and is thought to cycle within decades and is made up of the more complex or less soluble organic components left over from the previous processes of degradation and is believed to make up approximately 35% of the organic composition of the soil. The majority of the organic input to crop production comes from the Readily and Slowly Available pools of organic matter or the “active fraction”. The third pool of soil carbon is called “Humus” and is the oldest and least soluble form of soil carbons making up approximately 50% of the organic composition of the soil. It is a result of many years of degradation of organic sources. In fact, it is known that Humus is several hundreds of years old and some Humus sources have been found to be thousands of years old. Having been subjected to the forces of breakdown for many years, the resulting humus ends up being a very stable form of carbon. This pool of soil carbons contribute little chemically in the way of plant nutrition. It is only after the Humus has been broken down from its original state that it takes on a form that we can use effectively in crop production. Humus does however provide substantial benefits in its current state, where soil structure and nutrient holding capacity is concerned. Another way to look at soil carbons is to look at their solubility or availability to plants. Humus or Humic substances can be subdivided into three sub-divisions, Humins, Humic Acid and Fulvic Acid. Humins, are the largest of all carbon molecules and combined with its complexity makes it the most resistant to breakdown. Humins are not water soluble and are only made available by acidic or alkaline environments. Humins support a number of functions in the soil such as nutrient retention as part of the cation exchange capacity, it can improve water management both in holding capacity and percolation, it becomes part of the soil structure and it supports the overall soil fertility. Humic acids are a mixture of weaker organic acids that are not soluble under acid conditions but are available under alkaline conditions.  Humic acids are approximately 100 times smaller than Humins, are more active and are therefore much more available to plants. Humic acids have a number of functions as you might have heard me say before, it acts like a great bank for holding or chelating nutrients. Research has identified nearly 60 different mineral elements held within naturally occurring Humic acids.  These elements are complexed with organic molecules in a form that can be readily taken up by growing crops.  Fulvic acids are a mixture of organic acids that are soluble at all pH environments and are quite variable in shape and composition.  The size of a fulvic acid molecule is the smaller of the previous organic acids and is approximately 1000 times smaller than humins and 10 times smaller than humic acid. Even though they are small in size, in comparison, fulvic acids are much more reactive and possess an exchange capacity more than twice that of humic acids. By combining good practice focused on soil health and fertilizer products such as our Rhizo-Link products not only can we influence plant growth but we can improve the soils ability to exchange nutrient which in turn will help maximize crop production. Let me explain……………. Let’s say that we have applied a foliar treatment. The response to an application is for the plant to utilize our product initially in the plant cells and metabolic sites.  Additionally as carbohydrates are produced in the leaves they are transported downward into the root structures and are expelled in part as exudates. These exudates provide fuel for a host of microorganisms that in turn release acids and other organic compounds that further mineralize nutrients in the soil that will promote plant growth. Many of the necessary nutrients are impacted in some way by this process, with phosphorus being one which benefits the most. Along with the mineralization of nutrient, other microorganisms will make use of the exudates and manufacture growth hormones that in turn influence crop production.-Jay Castleman, Eastern US Sales Agronomist

Very few Ag publications today fail to publish at least one article discussing Soil Health. Advanced practices in tillage along with the use of cover crops and combining that with the use of growth regulators and rhizobacteria, such as that which is in our Rhyzo-Link products, are practices that will lead us in part to greater levels in crop production.

The common link between our soils, the plant and the symbiotic relationship between them all is Carbon and I’d like to take the next few paragraphs to add some clarity on the subject.

First, I want to turn over a few basic pieces and define carbon as it pertains to crop production. Carbon in the soil can be found in various stages of decomposition and varying degrees of usefulness. Soil carbons reside in three levels or organic pools.

The first pool is called “ Readily Available ” and is believed to cycle in one to two years and are primarily derived from the breakdown of plant and animal residues. These are simple carbons that will become available to crop production shortly after the breakdown of crop residue, manures or plowdown like cover crops. Many of the papers and the research that I have read suggests that on an average soil this pool of Readily Available carbons make up approximately 15% of the organic composition of the soil.

The second pool is called “ Slowly Available ” and is thought to cycle within decades and is made up of the more complex or less soluble organic components left over from the previous processes of degradation and is believed to make up approximately 35% of the organic composition of the soil.

The majority of the organic input to crop production comes from the Readily and Slowly Available pools of organic matter or the “active fraction”.

The third pool of soil carbon is called “ Humus ” and is the oldest and least soluble form of soil carbons making up approximately 50% of the organic composition of the soil.

It is a result of many years of degradation of organic sources. In fact, it is known that Humus is several hundreds of years old and some Humus sources have been found to be thousands of years old.

Having been subjected to the forces of breakdown for many years, the resulting humus ends up being a very stable form of carbon. This pool of soil carbons contribute little chemically in the way of plant nutrition. It is only after the Humus has been broken down from its original state that it takes on a form that we can use effectively in crop production. Humus does however provide substantial benefits in its current state, where soil structure and nutrient holding capacity is concerned.

Another way to look at soil carbons is to look at their solubility or availability to plants. Humus or Humic substances can be subdivided into three sub-divisions, Humins, Humic Acid and Fulvic Acid.

Humins , are the largest of all carbon molecules and combined with its complexity makes it the most resistant to breakdown. Humins are not water soluble and are only made available by acidic or alkaline environments. Humins support a number of functions in the soil such as nutrient retention as part of the cation exchange capacity, it can improve water management both in holding capacity and percolation, it becomes part of the soil structure and it supports the overall soil fertility.

Humic acids are a mixture of weaker organic acids that are not soluble under acid conditions but are available under alkaline conditions.  Humic acids are approximately 100 times smaller than Humins, are more active and are therefore much more available to plants. Humic acids have a number of functions as you might have heard me say before, it acts like a great bank for holding or chelating nutrients. Research has identified nearly 60 different mineral elements held within naturally occurring Humic acids.  These elements are complexed with organic molecules in a form that can be readily taken up by growing crops. 

Fulvic acids are a mixture of organic acids that are soluble at all pH environments and are quite variable in shape and composition.  The size of a fulvic acid molecule is the smaller of the previous organic acids and is approximately 1000 times smaller than humins and 10 times smaller than humic acid. Even though they are small in size, in comparison, fulvic acids are much more reactive and possess an exchange capacity more than twice that of humic acids.

By combining good practice focused on soil health and fertilizer products such as our Rhizo-Link products not only can we influence plant growth but we can improve the soils ability to exchange nutrient which in turn will help maximize crop production.

Let me explain……………. Let’s say that we have applied a foliar treatment. The response to an application is for the plant to utilize our product initially in the plant cells and metabolic sites.  Additionally as carbohydrates are produced in the leaves they are transported downward into the root structures and are expelled in part as exudates. These exudates provide fuel for a host of microorganisms that in turn release acids and other organic compounds that further mineralize nutrients in the soil that will promote plant growth.

-Jay Castleman, Eastern US Sales Agronomist

By emily.bookless February 6, 2025
February 6, 2025 
September 18, 2024
The benefits of maximizing potassium efficiency
August 20, 2024
The benefits of Zinc on Winter Wheat
July 9, 2024
As I travel across Canada, it has been great to see moisture along much of my path. Greener pastures and ditches in Alberta, lush spring wheat, durum, and lentil crops in Saskatchewan, as well as many triticale, grass, and alfalfa fields, are being cut from British Columbia to Nova Scotia. I do not want to forget those potatoes spread across our country along with many specialty crops. As heat and moisture have brought germination, emergence, and vegetation growth, our crop nutrient management remains a key to success as we monitor the “Points of Influence.” Crop scouting, accompanied by tissue or sap samples, supports crop-based crop protection and foliar nutrient applications. As we have been programmed to concentrate on nitrogen, we are putting a lot of pressure on one nutrient to solve many deficiencies and concerns while ignoring the balance of fertility our crops may be looking for. In this blog post, I will not cover all the nutrient requirements but concentrate a little on magnesium, as I refer to what makes plants green. This spring, a significant amount of discussion surfaced around magnesium, and several growers requested magnesium for their cropping plans. Sometimes, what is new is old; looking back, magnesium has been a big part of many crop plans for decades. In sandy soils, specialty crops, and our high calcitic soils, we are looking to balance our oxygen and moisture space in soil levels. To better understand what we are looking at, I have included a list of what Mg is responsible for as well as soil activity stated: Magnesium Crops require magnesium to capture the sun's energy for growth and production through photosynthesis. Magnesium is an essential component of the chlorophyll molecule, with each molecule containing 6.7 percent magnesium. Magnesium also acts as a phosphorus carrier in plants. Necessary for cell division and protein formation. Phosphorus uptake could not occur without magnesium, and vice versa. Magnesium is essential for phosphate metabolism, plant respiration, and the activation of several enzyme systems.
June 11, 2024
Welcome to June 2024. As discussed in our March article, weather is what we receive from above, and we do not make the arrangements. Again, what is in our control is taking our past lessons and applying our experiences to the 2024 crop. As we continue to “learn, unlearn, and re-learn,” we can better understand the points of influence that we can utilize to react to our crop's needs. With most of the germination and emergence behind us, we are looking to drive vegetation by developing the best foliage we can, capturing maximum sunlight, and amplifying plant energy. This energy will be the key to supporting reproduction and then crop fill throughout the season. This is where tissue and sap sampling must be utilized to build a balanced foliar program. Once we understand a crop's requirement, we can look at a demand curve and design a program to enhance plant health. Foliar applications are often a rescue, and not in the plan, as a tool, but are very valuable in utilizing soil-applied fertility through root activation. To better understand foliar applications, we must understand what we want to achieve. First, we need to have nutrients that can be taken up by the plants. Second, we need to understand how we will feed the plant, and thirdly, we need to apply fertility with a purpose. When applying foliar products, the rates will seem inadequate for the deficiency, but what is the overarching goal? “One of the touted benefits of foliar fertilization is the increased uptake of nutrients from the soil” (George Kuepper, NCAT Agriculture Specialist, Foliar Fertilizer 2003). As we continue to learn more about root-to-soil interaction, the measurement of root tips leads to a better understanding of how each tip, expressed through foliar applications, amplifies nutrient uptake. Regarding plant fertility, our ALPINE foliar products contain orthophosphate, which plants can readily absorb through vegetation. The potassium source, ALPINE Bio-K, has the benefit of smaller molecular size and a low deliquescence point, extending available uptake time. The ALPINE Micronutrients are also chelated, allowing them to be available for uptake by the plant. As for foliar feeding your crop, we want to apply products when the plant is best available to receive them. In the mornings, when the stomata are open, stay away from the day's heat stress. If a foliar dries on a leaf, it must re-wet to become available again. It is also advantageous to feed a healthy crop and fend off stress instead of waiting to see the stress and deficiencies prior to a reactive application. It is also essential to understand how nutrients move via diffusion. So, when we can keep our foliar fertilizer in solution for a more extended period, the concentration increases during water evaporation, allowing the fertilizer to be taken into your crops. Applying with a purpose is what I continue to strive to learn, causing me to read, experiment, and incorporate new ideas along the way. Take our ALPINE K20-S, for example, a 3-0-20-8S-0.2B-0.1Mn-0.002Mo blended foliar. Nitrogen works as an adjuvant to enhance nutrient uptake and increases the formation of amino acids required to develop protein along with sulfur and molybdenum. The ALPINE Bio-K, a potassium acetate source, increases plant metabolism, nutrient uptake, and feeding microbiology. As a result, the package, which also includes boron, is designed to improve uptake and assimilation to better equip your crop for success. When combining ALPINE K20-S with ALPINE CRN-B later in the vegetation season, we can stimulate crops to greater success. If the rain continues, this combination has proven to strengthen crops struggling with root rot and K & B deficiencies. I would also like you to consider working with your nitrogen applications, knowing that straight N is not always your plant's best friend. As we continue to look at humic and fulvic acids, along with Boron, Magnesium, and Calcium, in blended situations, there will be much more to write about in the near future. If you have further questions, don't hesitate to contact your ALPINE DSMs and Dealers. I wish everyone a safe and prosperous Summer ahead. Steve McQueen, Agronomy Manager
May 23, 2024
The Amplification of ALPINE F18 Max
ALPINE Liquid Fertilizer Blog
March 21, 2024
The movement to ALPINE’s newer in-furrow starter, ALPINE G241-S continues to happen across Eastern Canada...
March 6, 2024
ALPINE Bio-K Enhanced Feed Quality
More Posts
Share by: